
JOURNAL OF COMPUTATIONAL PHYSICS 125, 225–243 (1996)
ARTICLE NO. 0090

A Parallel Incompressible Flow Solver Package with a Parallel
Multigrid Elliptic Kernel

JOHN Z. LOU1 AND ROBERT FERRARO2

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Received June 30, 1995; revised January 11, 1996

portable parallel flow solver package for multiple applica-
tions. In terms of efficiency, we want the solver to haveThe development and applications of a parallel, time-dependent

incompressible Navier–Stokes flow solver and a parallel multigrid high numerical efficiency, as well as parallel computing
elliptic kernel are described.The flow solver is based on a second- efficiency, which is the reason to use a parallel multigrid
order projection method applied to a staggered finite-difference

elliptic kernel as a convergence accelerator for the parallelgrid. The multigrid algorithms inplemented in the parallel elliptic
flow solver. Flexibility and portability have been empha-kernel, which is needed by the flow solver, are V-cycle and full

V-cycle schemes. A grid-partition strategy is used in the parallel sized throughout our design and implementation of the
implementations of both the flow solver and the multigrid elliptic solver package. We want to develop the solver package so
kernel on all fine and coarse grids. Numerical experiments and that it can be used either as a stand-alone flow solver forparallel performance tests show the parallel solver package is nu-

several types of flow problems or as a flow solver templatemerically stable, physically robust, and computationally efficient.
Both the multigrid elliptic kernel and the flow solver scale very well which can be modified or expanded by the user for a spe-
to a large number of processors on Intel Paragon and Cray T3D for cific application. A reusable or template partial differential
computations with moderate granularity. The solver package has equation (PDE) solver, in our view, is a PDE solver pack-
been carefully designed and coded so that it can be easily adapted

age that can be adapted or expanded to solving a varietyto solving a variety of interesting two- and three-dimensional flow
of problems using different (component) numericalproblems. The solver package is portable to parallel systems

that support MPI, PVM, and NX for interprocessor communica- schemes as needed without a major rewriting of the
tions. Q 1996 Academic Press, Inc. solver code.

A basic assumption in our solver package is the use of
finite-difference methods on a rectangular grid or on a

1. INTRODUCTION composite grid with each of its components a rectangular
grid. The use of rectangular grids has several advantages:The final objective of this work is to develop a parallel
(1) finite-difference is easy to implement, and for manyand scalable incompressible flow solver package which can
applications, stable and robust finite-difference methodsbe used for solving a variety of practical and challenging
already exist and the use of a finite-element type schemeincompressible flow problems arising from physics and en-
may not be desirable due to physical and numerical consid-gineering applications. A few examples are convective tur-
erations; (2) multigrid is easy to apply; (3) parallel imple-bulence modeling in astrophysics, thermally driven flows
mentations are easier than on unstructured grids. Manyin cooling systems, and combustion process modeling. A
practical problems are, however, defined in irregular do-Navier–Stokes algorithm for successfully solving these
mains. One way to extend our solver package to problemscomplicated, nonsmooth flow problems must be numeri-
in an irregular domain is to construct a mapping betweencally stable, physically robust, and computationally effi-
the irregular domain and a rectangular region. For a varietycient. Results from numerical experiments in [2–4] indicate
of nonrectangular domains, such mappings can indeed bethat a second-order projection method proposed in [2] is
constructed (for more detail; see [9]).a promising candidate for simulations of complex incom-

A projection method for solving incompressible Navier–pressible flows.
Stokes equations was first described in a paper by ChorinOur task here is to develop an efficient, flexible, and
[6], which is a finite-difference method for solving the in-
compressible Navier–Stokes equations in primitive vari-

The U.S. Government’s right to retain a nonexclusive royalty-free ables. Bell et al. [2, 3] extended the method to second-
license in and to the copyright covering this paper, for governmental

order accuracy in both time and space and used a Godunovpurposes, is acknowledged.
procedure combined with an upwind scheme in the discreti-1 E-mail address: lou@acadia.jpl.nasa.gov.

2 E-mail address: ferraro@zion.jpl.nasa.gov. zation of the convection term for improved numerical sta-

225
0021-9991/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

226 LOU AND FERRARO

bility. A projection method is a type of operator-splitting tain at least one grid point next to the boundary of the
global grid, since boundary processors may change frommethod which separates the solutions of velocity and pres-

sure fields with an iterative procedure. In particular, at one grid to another. Grid-partition on all coarse grids is
certainly not the only possibility for parallel multigrid.each time step, the momentum equations are solved first

for an intermediate velocity field without the knowledge of Another approach, e.g., is to duplicate some of the global
coarse grids in every processor allocated, so that processinga correct pressure field and therefore no incompressibility

condition is enforced. The intermediate velocity field is on those coarse grids can be done without further inter-
processor communication, but this coarse-grid-duplicationthen ‘‘corrected’’ by a projection step in which we solve a

pressure equation and then use the computed pressure to approach involves quite some global communication for
grid duplication and it needs some extra storage for globalproduce a divergence-free velocity field. Our projection

step, which is based on a pressure equation derived in [1] coarse grids. These requirements may severely affect the
scalability of the solver when running on a large numberand makes use of the highly efficient elliptic multigrid

kernel we developed, is mathematically equivalent to, but of processors. One may also stop further grid coarsening
at the coarsest grid for which no idle processor appearsalgorithmically different from, the projection step de-

scribed in [2]. In actual flow simulations, this prediction– yet and solve the coarse grid problem by some direct or
iterative methods. But the cost in solving the coarse gridcorrection type procedure is usually repeated a few times

(one or two iterations seem to be enough from our experi- problem with those methods is not competitive, compared
to further grid coarsening. Although it seems no approachments) until reasonably good velocity and pressure fields

have been reached for that time step. In each time step is perfect for implementing a parallel classical multigrid
cycle [5, 8], we do believe the use of grid-partition at allfor computing an N-dimensional (N 5 2 or 3) viscous flow

problem, we need to solve m 3 N Helmholtz equations grid levels is an appropriate approach for implementing a
general-purpose parallel multigrid solver. The degradationfor the velocity field and m Poisson equations for the pres-

sure field, where m is the number of iterations performed of parallel efficiency due to the idle processors on some
coarse grids has been discussed in many papers (e.g., [5,at each time step. A fast multigrid elliptic solver is thus

very useful to improve the computational performance of 8, 10]). The performance measurements from our parallel
implementations indicate our multigrid solver scales quitethe flow solver. The multigrid kernel we developed was

designed to be a general-purpose elliptic solver. It can well on a 512-node Intel Paragon and on a 256-node Cray
T3D for both 2D and 3D problems with moderate sizessolve N-dimensional (N # 3) elliptic problems on vertex-

centered, cell-centered and staggered grids, and it can deal of local finest grid. In fact, the percentage of time spent
on those coarse grids is insignificant compared to the totalwith a variety of different boundary conditions as well.

Since the solver package is implemented on rectangular computation time. Similar observation was also made in
[8]. As shown by a simple asymptotic analysis in [7], thegrids, a natural parallel implementation strategy is grid-

partition: the global computational grid is partitioned and parallel efficiency of multigrid schemes with the grid-parti-
tion approach is not qualitatively different from that of adistributed to a logical network of processors; message

exchanges are performed for grid points lying on ‘‘partition single grid scheme.
The rest of the paper is organized as follows: Section 2boundary-layers’’ (whose thickness is usually dictated by-

the numerical schemes used) to ensure a correct implemen- presents numerical algorithms for the multigrid kernel and
the second-order projection method for the incompressibletation of the sequential numerical algorithms on the global

computational grid. In our implementation of the parallel flow solver; in Section 3, discussions are made on issues
related to the parallel implementations of the solver pack-multigrid V-cycle and full V-cycle schemes, we apply this

grid-partition to all coarse grids as well. This means on age; numerical results and parallel performances from the
implemented parallel solvers are shown in Section 4; Sec-some very coarse grid, only a subset of allocated processors

will contain at least one grid point on that grid and there- tion 5 gives some of our observations and conclusions.
fore they are ‘‘active’’ on that grid, whereas processors

2. THE NUMERICAL METHODSwhich do not contain any grid point will be idle when
processing that grid. The appearance of idle processors

A. The Multigrid Algorithms
certainly introduces some complexity for a parallel imple-
mentation. For example, the logical processor mesh on The multigrid schemes implemented are the so-called

V-cycle and full V-cycle schemes for solving elliptic PDEs,which the original computational grid is partitioned cannot
be used for communications on those coarse grids for which discussed in some detail in [4, 8]. The full V-cycle scheme

is a generalization of the V-cycle scheme which first re-idle processors appear. Depending on the type of finite-
difference grid and coarsening scheme, one may also need stricts the residual vector to the coarsest grid and then

performs a few smaller V-cycle schemes on all coarse grids,to consider, on those coarse grids, how to correctly apply
boundary conditions in ‘‘boundary processors’’ which con- followed by a complete V-cycle scheme on all grids. The

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 227

FIG. 1. Multigrid V-cycle and full V-cycle schemes.

full V-cycle scheme often offers a better numerical effi- stencil with the point-wise GS smoother does not even
result in convergence on our test problems, but the use ofciency than the V-cycle scheme by using a much better

initial guess of the solution in the final V-cycle. The parallel a Jacobi smoother with the nearest-neighbor restriction
stencil results in convergence but with a slower rate. Theefficiency for the full V-cycle scheme, however, is poorer

than the V-cycle scheme because it does more processing operator for transferring from a coarse grid to a fine grid
is basically bilinear interpolation for all grids. Since fineon coarse grids. Figure 1 shows pseudo-codes for the two

schemes in a recursive fashion and their graphic represen- and coarse grid points do not overlap on cell-centered and
staggered grids, one needs to set the values for grid pointstations.

A typical multigrid cycle consists of three main compo- at the boundary of coarse grids before a bilinear interpola-
tion operator can be applied. More details on the construc-nents: relax on a given grid, restrict the resulting residual

to a coarse grid, and interpolate a correction back to a fine tion of restriction and interpolation operators for different
types of grids can be found in [13].grid. Our multigrid solver can handle several different types

of finite-difference grids commonly used in numerical com- Out multigrid solver can solve Dirichlet and Neumann
problems for the grids depicted in Fig. 2. A periodic bound-putations. Figure 2 shows how coarse grids are derived

from fine grids for vertex-centered, cell-centered, and stag- ary condition is also implemented for a special case used
in the NS flow solver (to be discussed later). The Dirichletgered grids. Although the main steps in a V-cycle are

the same for all these grids, restriction and interpolation and Neumann boundary conditions are applied only to
the original (finest) grid; a homogeneous (zero) boundaryoperators can have different forms on different grids. On

a vertex-centered grid we use a full-weighting stencil (9- condition is used on all coarse grids since residual equa-
tions are solved there. In the case of a Neumann boundarypoint averaging on a 2D grid) to make the V-cycle scheme

converge well when a pointwise red–black Gauss–Seidal condition, where the unknowns are solved on all grid
points, including those on the grid boundary, restriction(GS) smoother is used; whereas on a cell-centered grid, a

nearest-neighbor stencil (4-point on a 2D grid) can be used stencils are not well-defined for boundary grid points.
Take, for example, the vertex-centered grid in Fig. 3, wherewith the pointwise red–black GS smoother to achieve a

good convergence rate. We also point out that, on a vertex- a 9-point full weighting stencil is used for restriction. This
can be done naturally for the interior point c. For boundarycentered grid, the use of the nearest-neighbor restriction

228 LOU AND FERRARO

FIG. 2. Coarsening of three types of grids: vertex-centered (top-left); cell-centered (top-right); and staggered (bottom).

points a and b, however, only a subset of the neighboring Stokes equations in a dimensionless form
points are within the grid and, therefore, weighting stencils
on those points still need to be defined in some way. On the ­u

­t
1 (u ? =)u 5 2=p 1 Re21 Du

(2)
other hand, it is reasonable to have the following discrete
integral condition satisfied between a pair of coarse and

= ? u 5 0,fine grids:

where u [Rn (n 5 2 or 3) is the velocity field, p [R isO
I,J

UIJ 3 AIJ 5 O
i, j

uij 3 aij , (1)
the pressure field, and Re is the Reynolds number. A
typical problem is to find u and p satisfying (2) in a domain

where UIJ and uij are solutions on coarse and fine grids V for a given initial velocity field u0 in V and a velocity
and AIJ and aij are areas of grid cells on coarse and fine boundary condition ub on ­V. The projection method for
grids, respectively. Restriction stencils for interior and solving Eqs. (2) is based on the Hodge decomposition
boundary points that satisfy Eq. (1) are given in Fig. 3. which states that any vector field u can be uniquely decom-

When solving a Poisson equation with a Neumann posed into a sum of u1 1 u2 with = ? u1 5 0 and u2 5 =f for
boundary condition, the solution is determined up to a some scalar function f. The projection method proceeds
constant. We use the following strategy to make sure the as a type of fractional step method by first writing the
application of multigrid cycles converges to a fixed solu- momentum equation in (2) in an equivalent form,
tion; after every relaxation on each grid, we perform a
normalization step by adding a constant to the computed ­u

­t
5 P(Re21 Du 2 (u ? =)u), (3)solution so that its value at a fixed point (we pick the point

located at the center of the grid) is zero. Our numerical
tests show this simple step results in a good convergence

where P is an orthogonal projection operator which pro-rate for Neumann problems.
jects a smooth function onto a divergence-free subspace.
Equation (3) can be viewed as the result of applying P toB. The Second-Order Projection Method
the momentum equation in (2) which can be rewritten as

We now give a brief description of the second-order
projection method for solving the incompressible Navier– ­u

­t
1 =p 5 Re21 Du 2 (u ? =)u. (4)

The projection operation removes the pressure gradient
in (4) because =p is orthogonal to the projection. Thus if
we let the right-hand side of (4) be a vector field V, then
=p 5 (I 2 P)V. The second-order projection method in
[2] is a modification to the original projection method pro-
posed in [6] to achieve a second-order temporal accuracyFIG. 3. Restriction stencils for interior point c and boundary points

a and b. and an improved numerical stability for the nonlinear con-

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 229

vection. It uses the following temporal discretization on to be at time n 1 As. Since un is the only velocity available
at the start of computations for time step n 1 1 and velocitythe momentum equation at each half time step n 1 As

values are not defined at cell centers and cell corners, we
use Taylor expansions of second-order accuracy in bothu n11,k 2 un

Dt
1 [(u ? =)u]n11/2 5 2=pn11/2,k

(5)
time and space, as was done in [2, 3], to find velocities at
appropriate locations and at the half time step n 1 As for
computing the discrete convection term. To improve nu-1

1
Re

D Su n11,k 1 un

2 D ,
merical stability, a Godunov-type procedure combined
with an upwind scheme is used in determining velocity
values at cell centers and cell corners. To compute the uwhere we assume the velocity un is known, and un11,k is
velocity component at the cell center of cell (i, j), foran intermediate velocity field that satisfies the same bound-
example, we first computeary condition as the physical velocity at time step n 1 1.

The temporal discretization in (5) is second-order accurate,
provided that the nonlinear convection term in (5) can be

uR 5 un
i21, j21/2 1

Dx
2

un
x,i21, j21/2 1

Dt
2

un
t,i21, j21/2

(6)
evaluated to the second-order accuracy at the half time
step n 1 As. The superscripts k in (5) indicate that an iterative
process is used for computing the velocity at next time uL 5 un

i, j21/2 2
Dx
2

un
x,i, j21/2 1

Dt
2

un
t,i, j21/2 ,

step un11 and the pressure at the next half time step pn11/2:
given a divergence-free field un and the corresponding
pressure field pn21/2, we first set pn11/2,0 5 pn21/2. For k $ where the expansions for uR and uL are evaluated on the
1, we solve (5) for un11,k. Since the correct pressure pn11/2 right side of edge (i 2 1, j 2 As) and on the left side of edge
is not known, the computed un11,k is usually not divergence- (i, j 2 As), respectively. The choice of un11/2

i21/2, j21/2 is then made
free; but un11,k can be used as a guess for un11 and it by the following upwind scheme:
is used to compute pn11/2,k, a new guess for pn11/2, by solv-
ing a pressure equation. Once we have a new guess for
pn11/2, it is used in (5) to compute un,k11. This iterative pro-
cedure is performed at each time step until =pn11/2,k R un11/2

i21/2, j21/2 5 5
uR, if uL . 0, uL 1 uR . 0,

0, if uL , 0, uR . 0,

uL, otherwise.

(7)
=pn11/2 and un11,k R un11. This iterative process converges
because it can be shown that the mapping of errors from
state k to state k 1 1 is contractive [2]. In practice, we
found 1 to 2 iterations would be enough to get a satisfac- The spatial derivatives in (6) are computed by first using
tory convergence. a centered differencing and then applying a slope-limiting

The convection term (u ? =)u is evaluated at the half step to avoid forming new maxima and minima in the
time step n 1 As, using only the velocity un and the pressure velocity field. Temporal derivatives in (6) are computed
pn21/2. On the staggered grid shown in Fig. 2, the pressure by using the momentum equation (4). Derivatives at cell
p is defined at cell centers; horizontal velocity u and vertical corners are computed in a similar way. More details for
velocity v are defined at cell edges. Let us denote cell the construction of these derivatives are given in [2, 3].
(i, j) as the cell whose center is located at (i 2 As)Dx, (j 2 As) After evaluation of the convection term, the intermedi-
Dy for i 5 1 ? ? ? I and j 5 1 ? ? ? J. (u ? =)u is then evaluated ate velocity un11,k can be found by solving the following
at i, j 2 As for the u component and i 2 As, j for the v Helmholtz equation for each velocity component:
component. The discretization for the u component, for
example, has the form

2Dun11,k 1
2Re
Dt

un11,k

(8)
[(u ? =)u]u 5

ui21/2, j21/2 1 ui11/2, j21/2

2 5 2Re S2[(u ? =)u]n11/2 1
1
Dt

un 1 Dun 2 =pn21/2D .

3 Sui21/2, j21/2 2 ui11/2, j21/2

Dx D We notice that the matrix derived from Eq. (8) becomes
more diagonally dominant as the Reynolds number in-
creases for a fixed grid size and a fixed time step, which is1

vi, j21 1 vi, j

2 Sui, j 2 ui, j21

Dy D ,
fortunate for computing flows with large Reynolds num-
bers. For inviscid flow problems where Re 5 y, un11,k can
be computed explicitly from Eq. (5). Once un11,k is com-where ui61/2, j61/2 are velocities at cell centers, ui,j and vi, j

are velocities at cell corners and all velocities are assumed puted, a projection step is performed to find the pressure

230 LOU AND FERRARO

FIG. 4. Flow diagram for the Navier–Stokes solver.

field pn11/2,k11 by solving a Poisson equation, solver is used to solve both Eqs. (8) and (9). After the
pressure field pn11,k11 is found, un11,k11 can be computed
by using Eq. (5) with pn11,k11, in place of pn11,k, and thisDp 5 R(un, un11), (9)
completes one iteration in the computations for the time
step n 1 1; un11 and pn11 are then obtained at the end of thewhere un11,k is used in place of un11 in the right-hand side
last iteration. The flow of control for our incompressibleof Eq. (5). Mathematically, Eq. (9) is the result of applying
Navier–Stokes solver is shown in Fig. 4.a divergence operator to the momentum equations in (2).

Since no boundary condition is defined for the pressure
3. PARALLEL IMPLEMENTATIONSfield, some special treatments are needed at the boundary

grid points in solving Eq. (9). The details of deriving the
A. Grid Partition and Logical Processor Mesh

pressure equation (9) on a staggered grid with appropriate
treatments at boundary grid points for Dirichlet velocity The approach we adopted in parallel implementations

of the multigrid elliptic solver and the incompressible flowboundary condition is given in [1]. The treatment of the
pressure boundary condition for a periodic velocity bound- solver is grid-partition. Our goal is to develop parallel

solvers that can partition any N-dimensional (N # 3) rect-ary condition using a multigrid scheme is discussed in Sec-
tion 4. In computing a viscous flow, the multigrid elliptic angular grids and run on any M-dimensional (M # N)

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 231

FIG. 7. A local subgrid (white area) with surrounding ghost points
(shaded area).FIG. 5. A 3D Grid partition and mapping to a processor mesh. Only

two wrap-around connections were shown in the logical processor mesh.

case for the Navier–Stokes flow solver. After executing
logical processor meshes. For example, Fig. 5 shows the this initialization routine, every processor knows its ‘‘role’’
partition of a three-dimensional grid and the assignment at each level of the multigrid cycle, and it also knows its
of the partitioned subgrids to a three-dimensional torus neighboring processors on that grid level.
processor mesh. As shown in Fig. 6, logical processor
meshes in our code are always constructed as toroidal B. Interprocessor Communications
meshes. Toroidal meshes are useful in the construction of

To implement the multigrid scheme and the projectionnested coarser processor meshes for the multigrid solver
method on a partitioned grid, we need to exchange dataand for dealing with problems with a periodic boundary
which are close to the partition boundaries of each subgridcondition.
local to a certain processor. Each processor contains aIn the multigrid solver, coarse grids and coarse logical
rectangular subgrid surrounded by some ‘‘ghost gridprocessor meshes are constructed automatically and recur-
points’’ which are duplicates of grid points contained insively, based on information on a given fine grid. All grid
other processors, as shown in Fig. 7. The number of ghoststorages are allocated dynamically during the grid coarsen-
points on each side of the subgrid depends on the numericaling process. In particular, for each multigrid level, a local
algorithms. For the multigrid elliptic solver using a stan-coarse grid is derived from the local fine grid and storages
dard Laplacian stencil, one ghost grid point on each sideare allocated for the coarse grid. Processors which will get
is needed for the local subgrid at each level, whereas for theat least one grid point on that coarse grid will be in an
second-order projection method, three ghost grid points onactive state on that grid; otherwise they will be in an idle
each side are needed in computing the nonlinear convec-state on that grid. A flag is then set in each processor for
tion term using Taylor series and upwind schemes. There-that level, depending on the value of the state. A coarse
fore in the Navier–Stokes flow solver, we allocate storagesprocessor mesh for that coarse grid can then be established
for three ghost grid points for the fine local grid and oneby communicating the states among the processors in the
ghost grid point for each coarse grid. For certain operationsfine processor mesh. This process is repeated recursively
in the multigrid scheme (e.g., restriction and interpolation)until all the coarse grids and the coarse processor meshes
and for computing the convection term in the projectionhave been constructed. As an illustration, Fig. 6 shows a
method, ghost grid points in the diagonal neighbor are alsoprocessor mesh and its derived coarse mesh for a problem
needed, as shown in Fig. 8. Since processors Pi and Pjwith a Neumann boundary condition. In our multigrid
in Fig. 8 are not nearest neighbors, direct data exchangesolver, we put this construction process in an initialization
between them will introduce a more complicated message-routine which must be called before the first time the
passing pattern. Fortunately, direct data exchange betweenmultigrid solver itself is called. The cost of running the
Pi and Pj is not necessary to get the diagonal ghost gridinitialization routine is relatively small when one needs to

call the multigrid solver a large number of times, as is the

FIG. 6. If the left processor mesh contains a 5 3 5 grid for a Neumann FIG. 8. The data in the lower left corner of the subgrid in processor
Pi are needed by processor Pj , and stored in Pj’s ghost grid points atproblem on a vertex-centered grid, then the derived coarse processor

mesh is the one on the right. upper right corner.

232 LOU AND FERRARO

using asynchronous message-passing calls. For one full V-
cycle in the elliptic solver, for example, the performance
improvement on a 256 3 256 grid partitioned among 256
processors is about 15%, and the improvement on a 2563

grid partitioned among 512 processors is about 22%. Faster
and asynchronous interprocessor communication can also
be achieved on a Cray T3D by using its shared-memory
communication model, in which direct memory copy is
used at either sending or receiving processors for data
exchanges between different processors. Some synchroni-

FIG. 9. Data exchanges between neighboring processors for 2D prob- zation between sending and receiving processors, however,
lems. The data in black blocks in each processor are sent out, which is is needed before or after a direct memory copy is per-stored in the blocks for ghost grid points in the neighboring processors.

formed to ensure the correctness of a message-passing. On
a T3D processor synchronization is provided only for a
group of processors with a fixed stride in their processor

points. It can be verified that all the data exchanges we indexes, this shared-memory communication model can be
need are of nearest neighbor types, as indicated in Fig. 9 easily used for the exchange of partition boundary data in
for 2D problems. As can be seen in Fig. 9, when data lying the flow solver and for the multigrid elliptic solver on some
on the partition boundaries are exchanged, the sending fine grids in which data exchanges only occur between
blocks always include ghost grid points. After the data nearest-neighbor processors on the original processor
exchanges in Fig. 9 are performed, all the ghost grid points mesh.
shown in Fig. 7 will be obtained by appropriate neighboring
processors. Each processor, therefore, only needs to know

C. Software Structuresits nearest neighboring processors on each logical proces-
sor mesh. In solving problems with periodic boundary con- Our solvers were implemented in C because we think
ditions, data exchanges are also required among processors it is the language that provides adequate support for imple-
lying on the boundary of a processor mesh, and the same menting advanced numerical software without incurring
message-passing operations as shown in Fig. 9 can be used. unreasonably large overhead. Since our goal is to develop

The parallel efficiency of a parallel code is largely deter- reusable and high-performance PDE solvers which can be
mined by the ratio of local computations over interproces- used either as library routines or as extensible, template-
sor communications. In our solvers, the best parallel effi- type code for different applications, we emphasize in our
ciency is achieved on the finest grid, where the code design both generality and flexibility. First, we want
communication cost could be easily dominated by a large the solvers to be able to run on any M-dimensional rectan-
amount of computations, and the parallel efficiency de- gular processor meshes for any N-dimensional rectangular
grades as the grid gets coarser. One way to hide communi- grids with (M # N) (for multigrid processing, N is usually
cation overhead and thus improve parallel efficiency on a power of 2). This requirement introduces some complexi-
all grids is to overlap communications with computations. ties in coding the multigrid solver in terms of determining
In several places within our solvers, we have the following the right global indices for local grids at each grid level.
sequence of operations for each processor: Storages for all grid variables are allocated at run time.

For the multigrid solver, storages for local coarse grids are(1) Exchange data lying on partition boundaries;
allocated as they are derived recursively from local fine

(2) Perform processing on all local grid points. grids. The user is given the option either to supply the
storage for variables defined on the original grid or to letTo overlap communications with computations, we can
the solver allocate those storages. An array of pointers toperform the following sequence of operations for the
an N-dimensional grid (i.e., an N-dimensional data array)same result:
is allocated, and each of the pointers points to a grid in

(1) Initiate the data exchange for partition boundaries; the grid hierarchy. N-dimensional data array is constructed
(2) Perform processing on interior grid points that do recursively from one-dimensional data arrays. This strat-

not need ghost grid points; egy of dynamic memory allocation offers a greater flexibil-
ity in data structure manipulations and more efficient use(3) Wait until data exchange in (1) is complete;
of memory than a static memory allocation, and the user(4) Perform processing on the remaining grid points.
is also alleviated from the burden of calculating storage
requirements for multigrid processing.On intel Paragon, we implemented the second set of opera-

tions above in the multigrid solver and the flow solver There are two major communication routines in the

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 233

TABLE I

Numerical Convergence: 2D Helmholtz Solver

Scheme Grid size Error No. of processors No. of cycles CPU seconds

Full V-cycle 20482 3.0 3 1027 64 3 14.7
V-cycle 20482 3.5 3 1027 64 6 14.5
Single grid 20482 9.7 3 1021 64 400 R-B sweeps 124.7

solvers: the communication routine for the flow solver ex- pressure, which will be used in subsequent calls to the
multigrid solver.changes partition boundary data only on the original grid;

the communication routine for the multigrid solver can
exchange partition boundary data for all fine and coarse 4. NUMERICAL EXPERIMENTS AND
grids, using a hierarchy of processor meshes. To make the PARALLEL PERFORMANCES
code portable across different message-passing systems,
we defined our own generic message-passing library as an We now report numerical experiments made to examine
interface with our solvers. To use a new message-passing the numerical properties of the parallel solvers on a few
system, we only need to extend the generic message-pass- test problems, and parallel performances in terms of
ing library to that system without changing any code in speedup and parallel scaling of the solvers on Intel Paragon
our solvers. Currently, our generic message-passing library and Cray T3D systems for problems with different sizes
can accommodate NX, MPI, and PVM. A separate data and granularity.
exchange routine has also been implemented for the flow
solver, which uses the shared-memory communication li- A. The Elliptic Multigrid Solver
brary on Cray T3D.

The multigrid elliptic solver was first tested on Helm-Simple user interfaces to the parallel solvers have also
holtz and Poisson equations with known exact solutions.been constructed. The elliptic multigrid solver can be used
Table I and Table II show the convergence rates of theas a stand-alone library routine with both C and Fortran
multigrid solver from solving 2D and 3D Helmholtz equa-interfaces. After initialization of the problem to be solved
tionsand some algorithm parameters, a preprocessing routine

must be called before the first time the multigrid solver
2Du 1 u 5 froutine is called. The preprocessing routine constructs the

set of nested grids and the corresponding set of logical
processor meshes. The flow solver can be used as a general- with Dirichlet boundary conditions. The runs were per-

formed on Intel Paragon. Errors displayed are the normal-purpose incompressible fluid flow solver on a rectangular,
staggered finite-difference grid for problems with Dirichlet ized maximum norm of the difference between a computed

solution and the exact solution. The tables show the num-or periodic velocity boundary conditions. To use the
multigrid solver as a kernel for evaluating velocity and ber cycles needed in each case to reach the order of discreti-

zation error (or truncation error). At each grid level, twopressure fields, the preprocessing routine must be called
for each velocity component and the pressure, since they red–black relaxations were performed. Although the full

V-cycle scheme is usually considered a lot more efficientare defined on different grid points on a staggered grid.
Therefore separate structures will be constructed in the than the V-cycle scheme in sequential processing [4], it

seems not necessarily the case in terms of total executionpreprocessing routine for each velocity component and the

TABLE II

Numerical Convergence: 3D Helmholtz Solver

Scheme Grid Error No. of processors No. of cycles CPU seconds

Full V-cycle 2563 1.2 3 1025 64 4 71.3
V-cycle 2563 2.6 3 1025 64 86 86.7
Single grid 2563 8.3 3 1021 64 400 R-B sweeps 652.1

234 LOU AND FERRARO

time cost in parallel processing. As shown in the tables, used. Although a nice speedup can be obtained for many
applications with a small number of processors, the reduc-for the 2D problem, even though the V-cycle scheme takes

three more cycles to reach the same order of error than tions in CPU time often become very small when a large
number of processors is used. This phenomenon is largelythe full V-cycle scheme, the CPU time for both schemes

are about the same for that test problem; but for the 3D inevitable, as stated in Amdahl’s law, because as the num-
ber of processors used increases for a certain fixed problemtest case in Table II, the full V-cycle scheme is still a little

more efficient. With a domain decomposition of both fine size, the communication cost (e.g., the latency for message-
passing) and the cost for global operations will eventuallyand coarse grids, parallel efficiency degrades as the pro-

cessing moves to coarser grids. Since the full V-cycle become dominant over local computation cost after a cer-
tain stage, which makes the influence of a further reductionscheme does more processing on coarse grids, its parallel

efficiency is worse than the V-cycle scheme. For a large in local computations very small on the overall cost of
running the application. On the other hand, the scalingcomputational grid with many levels of coarse grids, the

higher numerical efficiency of the full V-cycle scheme may performance of an application seems to be a more realistic
measure of its parallel performance, since a code with anot improve overall computational performance, due to

its worse parallel efficiency, as is the case for the 2D case good parallel scaling implies, given enough processors, it
can solve a very large problem in about the same time asin Table I. For an appreciation of the effectiveness of the

multigrid scheme which has a rate of convergence indepen- it requires for solving a small problem, which is, indeed,
one of the main reasons to use a parallel machine. Figuredent of grid sizes, the errors after a large number of red–

black relaxations on the finest grid are also shown in the 10 displays two speedup plots for a multigrid V-cycle and
a full V-cycle for solving 2D and 3D Helmholtz equationslast rows of the tables. Although not shown in the paper,

the convergence rates of the multigrid solver were also with a Dirichlet boundary condition on a vertex-centered
grid, measured on Intel Paragon and Cray T3D systems.measured for cell-centered grid and staggered grid. We

found for the same model problem the convergence speeds For a comparison, an ideal speedup curve for one test case
is also shown. The code was compiled with the 2O2 switchare slightly slower on those grids, which could be due to

the use of different restriction operators. on both machines. The grid size for the 2D problem is
512 3 512, and the grid size for the 3D problem is 64 3The parallel performance of an application code is usu-

ally judged by two measurements: speedup and scaling. 64 3 64. The maximum number of processors used for the
2D problem is 256 on both machines. For the 3D problem,Speedup is measured by fixing the problem size (or grid

size in our case) and increasing the number of processors all 256 processors were used on the T3D (in which case a
rectangular processor mesh of dimensions 4 3 8 3 8 wasused. Scaling is measured by fixing the local problem size

in each processor and increasing the number of processors used) and 512 processors were used on the Paragon.

FIG. 10. Speedup performances of the elliptic multigrid solver.

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 235

FIG. 11. Scaling of the multigrid solver on the Intel Paragon.

In terms of single processor performance, we found for degrade when more than 16 processors were used, and for
the 3D problem, the degradation started when more thanour multigrid solver that Cray T3D is about 4 times faster

than Intel Paragon. But since the implementation of PVM 8 processors were used. Despite the degradation in
speedup, we can still see some reduction in CPU time whenon T3D, which we used in our code for message-passing,

is relatively slow for interprocessor communication, the the largest number of processors was used in each case.
Figure 11 shows the scalings of the parallel multigridperformance difference for a parallel application on both

machines tends to become smaller as granularity of the solver on the Intel Paragon for problems with three differ-
ent granularities, using up to 512 processors. Figure 12problem gets finer. We can see for both 2D and 3D prob-

lems that the V-cycle scheme has a slightly better speedup shows the scalings of the same problems on the Cray T3D,
using up to 256 processors. Shown in the plots are theperformance than the full V-cycle scheme, which is ex-

pected since the full V-cycle scheme does more processing ratios of CPU times using n processors versus using one
processor. On each of the scaling curves, we fix the localon coarse grids. For the 2D problem, speedup started to

236 LOU AND FERRARO

FIG. 12. Scaling of the multigrid solver on the Cray T3D.

grid size and increase the number of processors, so a flat the plots in Fig. 11 and Fig. 12 that scaling performance
improves as the size of local grid increases. This improve-curve means a perfect scaling. Since a larger global grid

has more coarse grid levels for a complete V-cycle or a ment is expected for an iterative scheme on a single grid,
since the computation cost scales as O(n), where n is thefull V-cycle, the cost for processing on coarse grids also

rises as the number of processors increases, and therefore number of grid points in the local grid, whereas the commu-
nication cost scales as O(n1/2). For a multigrid scheme, itit has a negative effect on the scaling performance. Like

speedup performance, scaling performance is also largely can still be shown that both computation cost and commu-
nication cost scale with the same orders as on a single griddetermined by the ratio of local computation cost versus

communication cost. This ratio can be dependent on both [7]. In addition, message-passing latency does not increase
as proportionally since the number of messages communi-numerical/parallel algorithms and hardware/software per-

formances on each specific machine. We can see from all cated is still roughly the same for a larger local grid (not

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 237

TABLE IIIexactly the same because more coarse levels are involved)
although the size of each message is larger. We can also Second-Order Convergence Rate for Several
see the V-cycle scheme scales somewhat better than the Reynolds Numbers
full V-cycle scheme, which is expected since the latter does

Re 64 3 64 Rate 1282 Rate 2562 Rate 5122more operations on coarse grids. The scaling plots also
show 2D test cases scale better than 3D test cases, which

1000 4.628 1.961 1.195 1.982 3.010 2.035 7.568
we think is due to the fact that 3D grids have a higher E-5 E-5 E-6 E-7
surface to volume ratio than the 2D grids and, thus, the 3000 2.253 1.879 6.120 1.952 1.583 1.996 3.964

E-5 E-6 E-6 E-7ratio of computations to communications is smaller for 3D
5000 1.478 1.824 4.181 1.845 1.087 1.870 2.970cases. As for a comparison between the Intel Paragon and

E-5 E-6 E-6 E-7the Cray T3D, our results show that scalings on the Paragon
are slightly better than on the T3D. This could be explained
by the fact that single processor speed on the T3D is much
faster than on the Paragon, whereas the speed of interpro-
cessor communication on the T3D is not proportionally where E(u)k is the error measured on a grid of size 2k 3

2k. A second-order rate of convergence can be seen fromfaster when PVM is used for communication.
the data in Table III. The rate improves slightly as the grid

B. The Incompressible Navier–Stokes Solver become finer, possibly due to better accuracy on finer grids.
The rate also drops slightly as the Reynolds number in-The parallel Navier–Stokes solver was first tried out on
creases, which could be a result of more numerical noisea test problem with the following exact solution:
introduced at higher Reynolds number calculations. Table
III shows smaller errors at higher Reynolds number, whichu 5 2cos(x) sin(y)e22t/Re v 5 sin(x) cos(y)e22t/Re

(10)
in fact does not contract the intuition about higher Reyn-
olds numbers being harder to compute because their exact­p

­x
5

1
2

sin(2x)e24t/Re ­p
­y

5
1
2

sin(2y)e24t/Re.
solution has less variation in time at higher Reynolds
number.

The purpose of the test is to examine the convergence Our next numerical experiment on the flow solver is to
rate of the flow solver.The computation was performed in simulate an evolving 2D driven-cavity flow. The computa-
the unit square 0 # x, y # 1 with initial and (time depen- tional domain is still in a unit box 0 # x, y # 1. The no-
dent) boundary conditions specified by the given solution. slip velocity boundary condition is applied to all bound-
For numerical stability of the Godunov scheme used in aries except at the top boundary, where the velocity value
discretizing the convection term, the time step, Dt, is re- is given. We first test the solver on the problem in which
stricted by the CFL condition the velocity initial condition is specified by u 5 0 inside

the domain, and the velocity at the top boundary is always
one. Figure 13 displays the velocity vector fields whichDt

Dx
umax , 0.5, (11)

show three stages for time 5 0.16, 3.91, and 15.63 in the
evolution of the flow, computed on a 256 3 256 grid with
the Reynolds number 5 5000. The CFL number (i.e., thewhere Dx is the size of grid cells and Umax is the maximum
right-hand side of (10)) used in the calculation is 0.4, andvalue in the current velocity field. In using multigrid solver
a total of 10,000 time steps was computed to reach thefor solving velocity and pressure equations, we perform
last state at time 5 15.63. Figure 14 shows the vorticityfour full V-cycles in each call to the elliptic solver. On a
structures at time 5 3.91 and 15.63. We found the vorticity64 3 64 grid, we found four full V-cycles can reduce the
structure at time 5 15.63 is similar to those obtained byresidual error to the order of 10210 for the test problem
solving the steady incompressible Navier–Stokes equa-whose solution norm is one, which we think is good enough
tions (e.g., [11]). In running the parallel solver on a Crayfor our purpose. Table III shows the convergence rate of
T3D, the global staggered grid was partitioned and distrib-the computed velocity field to the exact velocity field using
uted to an 8 3 8 logically rectangular processor mesh. Inthree Reynolds numbers. The velocity was computed to
computing the velocity vector field, velocity componentstime 5 3.12, which is about 400 time steps on a 64 3 64
defined on the cell edges were averaged to the center ofgrid. The error in Table III was measured by
the cells. For better visibility, the vector fields shown in
Fig. 13 are actually 32 3 32 data arrays which were obtainede(u) 5 iuexact 2 ucompimax e(v) 5 ivexact 2 vcompimax
by averaging the 256 3 256 velocity vectors from the simu-
lation. Vorticity fields were computed at cell corners byE(u) 5 max(e(u), e(v)) Rate 5 log2 S E(u)k

E(u)k11D ,
central differencing. The velocity vector plots in Fig. 13

238 LOU AND FERRARO

FIG. 13. Velocity vector plots from computing an unsteady driven-cavity flow with Re 5 5000. The simulation was done on a 256 3 256 grid,
using 64 processors on the T3D. Shown are plots at time 5 0.16 (top left), 4.69 (top right), and 15.63 (bottom). A steady state of the flow can be
very slowly reached.

show clearly how the cavity flow develops from its initial tions. The top boundary now moves with a slip velocity
ut(x) 5 16x2(1 2 x2) and the initial velocity field is specifiedstate to the final steady state which is characterized by a

primary vortex in the center of the unit box and two sec- through a stream function c0(x, y) 5 (y2 2 y3)ut(x). The
velocity is then computed by u 5 2cy and v 5 Cx . In thisondary vortices at the two bottom corners and a small

vortex at the upper left corner (e.g., [11]). We also noticed, case, we wanted to test the numerical stability of the flow
solver on problems with large Reynolds numbers whichwhen reaching the final stage in Fig. 13, that the change

of numerical divergence of the computed velocity field will result in a very thin boundary layer at the top bound-
ary. Figure 15 displays a velocity vector field and a vorticitybefore and after projection is very small. This is because,

when the steady state is reached, the intermediate velocity contour from a calculation with Re 5 105, at time 5 4.69
for a total of 3000 time steps using a 256 3 256 grid. Figurefield would be computed using the correct pressure field

to result in a correct velocity field. Even though the initial 16 displays the result from a calculation with Re 5 106 for
a total of 7000 time steps on a 512 3 512 grid. Thesecondition is not continuous along the top boundary and

the boundary condition is not continuous at the two upper computations were performed on Cray T3D using 64 pro-
cessors. We noticed the computations of our solver at thesecorners of the unit box, the numerical computation of the

flow solver turns out to be quite stable. Reynolds numbers seem to be still numerically stable,
which we can judge by checking the convergence rate ofThe flow solver was next tried on a driven-cavity flow

problem with some smooth initial and boundary condi- the pressure equation and the numerical divergence of the

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 239

computed velocity. The computed flow structures at these
Reynolds numbers, however, are quite different from that
obtained from the computed flow with Re 5 5000. First,
at these high Reynolds numbers, the computed flows did
not show any sign of approaching a steady state after com-
puting the large numbers of time steps; while with Re 5
5000, for the same initial and boundary conditions, we
found a steady state can be reached after computing a
smaller number of time steps. Second, we can see some
interesting flow patterns which do not exist in the flow
with Re 5 5000. As shown by the vorticity contours in Figs.
15 and 16, the vorticity structures in these high Reynolds
number flows are much more complicated. We can see a
large amount of vortices are generated from the top bound-
ary and are then being flushed down along the right wall.
Once these vortices reach the neighborhood of the lower

FIG. 15. Velocity vector field (top) and vorticity contour plot (bot-
tom) from the driven-cavity flow with Re 5 105, at time 5 4.69. Grid
size 5 256 3 256.

right corner, they are pushed toward the interior of the
box. We found the vorticity plot in Fig. 16 is similar to
that reported in [12], where a different algorithm was used
on the same problem.

The second problem we tested on our flow solver is an
inviscid fluid flow for which the Euler equations are solved.
The computational domain is again restricted to a unit
box, and a periodicity of one is assumed in both horizontal
and vertical directions. The initial velocity field is given by

u 5Htanh(y 2 0.25)/r for y $ 0.5

tanh(0.75 2 y)/r for y . 0.5 (12)FIG. 14. Vorticity contour plots from a driven-cavity flow with Re 5

5000, at time 5 3.91 (top) and time 5 15.63 (bottom). Grid size 5

256 3 256. v 5 d sin(2fx),

240 LOU AND FERRARO

sion, say N, is preferably taken as a power of 2 for the
convenience of applying grid coarsening. Thus there are
N 2 unknowns for the pressure. Since the velocity field is
only related to the pressure gradient in the momentum
equations, it makes sense to have the velocity defined on
an (N 2 1) 3 (N 2 1) grid, as shown in Fig. 17. Therefore
there are (N 2 1)2 unknowns for each velocity component.
Since the velocity is periodic, a periodic domain should
have a dimension of (N 2 1) 3 (N 2 1). Since the pressure
gradient is a function of velocity, it must have the same
dimension of periodicity. Thus the numerical boundary
condition for the pressure gradient in the finite-difference
equations derived from pressure equation (9) in the hori-
zontal direction, for example, can be specified as

P0, j 5 P1, j 1 PN22, j 2 PN21, j ,
(13)

PN11, j 5 PN, j 1 P2, j 2 P1, j .

In a multigrid solution of the pressure equation, the
boundary condition (13) is clearly for use on the original,
finest grid. The use of condition (13) on any coarse grid,
however, is incorrect (our numerical experiments indicate
the use of (13) on coarse grids will blow up the computation
quickly). Since the unknown vector on a coarse grid is the
difference between an exact solution and a approximate
solution on the fine grid restricted to that coarse grid, the
solution on a coarse grid can be regarded as an approxima-
tion to the derivative of the solution on the fine grid. Since
a derivative of the pressure field of any order is still periodic
with the same period as the velocity field, a reasonable
boundary condition for pressure on coarse grids is

P0 5 PN , PN11 5 P1 . (14)

Although condition (14) imposes a period which is one
grid cell (of the finest grid) larger than the velocity period,

FIG. 16. Velocity vector plot (top) and vorticity contour plot (bottom) we found it is easy to apply it to all the coarse grids, and
from a driven-cavity flow with Re 5 106, at time 5 5.47. Grid size 5 our numerical results show it works well.
512 3 512.

Numerical experiments for the inviscid periodic shear
flow were performed on a Cray T3D, using 64 processors

where r 5 0.03 and d 5 0.05. Thus the initial flow field
consists of a jet which is a horizontal shear layer of finite
thickness, perturbed by a small amplitude of vertical veloc-
ity. Since the viscous term is dropped, the pressure can be
updated without computing the intermediate velocity field
and the multigrid elliptic solver is only used for solving
the pressure equation (9). In addition, only one iteration
at each time step is needed for computing pn11/2 and un11

because the pressure can be computed without the knowl- FIG. 17. An example of a staggered grid used for computing the
edge of un11. On the staggered grid we used, the pressure doubly periodic shear flow with N 5 4. Unknowns for velocity and pres-

sure in the grid are shown.field is defined on a cell-centered grid whose linear dimen-

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 241

FIG. 18. Vorticity contour plots from the periodic shear flow at time 5 FIG. 20. Vorticity contour plots from the periodic shear flow for
0.0 (left) and 0.62 (right). Grid size 5 128 3 128. time 5 1.25 (left) and time 5 2.50 (right). Grid size 5 256 3 256.

in all cases. Figure 18 shows the vorticity contours of two after more than 64 processors were used. By running the
early states of the inviscid periodic shear flow. Figures 19, flow solver on a single processor, we found the T3D is
20, and 21 show the vorticity contours of the flow at time 5 about 5 times faster than the Paragon for the code compiled
1.25 and 2.50, computed on a 128 3 128 grid, a 256 3 256 with the -O2 switch. But on 256 processors, the T3D runs
grid, and a 512 3 512 grid, respectively. The CFL number only about 1.5–2.0 times faster than the Paragon, de-
used in the computations is still 0.4. On the 512 3 512 pending on problem sizes, because, as shown in Fig. 22,
grid, a total of 3200 time steps were computed to reach the speedup performance of the flow solver on the Paragon
time 5 2.50. These vorticity plots show how the shear lay- is better than on the T3D. Figure 23 shows the scaling
ers, which form the boundaries of the jet, evolve into a performances of the parallel flow solver on the T3D and
periodic array of vortices, with the shear layer between the Paragon for three local problem sizes. Again, we see
the rolls stretched and thinned by the large straining field the scaling improves as the size of local grid increases on
there. A comparison between Figs. 19–21 clearly shows both machines. In measuring the scalings of the flow solver,
the resolution of the vorticity structure improves as the we used smaller local problem sizes than we did for the
computational grid gets finer. multigrid elliptic solver (see Figs. 11 and 12). We expect

The parallel performances of the incompressible flow the flow solver to have better scalings than the multigrid
solver were also evaluated in terms of speedup and scalabil- elliptic solver because the flow solver, even though calling
ity. In each of the parallel performance measurements, we the elliptic solver several times at each time step, does
ran the flow solver on the driven-cavity problem for one substantially more additional processings on the finest grid.
time step, excluding any initialization and assignment of Indeed, this scaling difference between the two solvers can
initial and boundary conditions. Figure 22 shows the be verified by looking at the scaling curves for the 64 3
speedup curves of the flow solver on the Intel Paragon 64 local grid for the flow solver in Fig. 23 for the multigrid
and the Cray T3D systems for three different problem full V-cycle (which is used in the flow solver) in Figs. 11
sizes (ideal speedup curves are shown again for compari- and 12. In view of the scaling performances in Fig. 23, we
son). The speedup performance improves as the problem would claim that our parallel flow solver scales quite well
size increases, as expected. For the 512 3 512 grid, no on large numbers of processors, as long as the local grid
significant reduction in execution time could be obtained size is not smaller than 64 3 64.

FIG. 21. Vorticity contour plots from the periodic shear flow forFIG. 19. Vorticity contour plots from the periodic shear flow for
time 5 1.25 (left) and time 5 2.50 (right). Grid size 5 128 3 128. time 5 1.25 (left) and time 5 2.50 (right). Grid size 5 512 3 512.

242 LOU AND FERRARO

FIG. 22. Speedup performances of the parallel Navier–Stokes.

5. CONCLUSIONS a highly modular approach so that they can be used either
as stand-alone solvers or as expandable template codes
which can be used in different applications. Several mes-In this paper we presented multigrid schemes for solving

elliptic PDEs and a second-order projection method for sage-passing protocols (MPI, PVM, and Intel NX) have
been coded into the solvers so that they are portable tosolving the Navier–Stokes equations for incompressible

fluid flows. Our parallel implementation strategies based systems that support one of these interfaces for interpro-
cessor communications.on grid-partition are discussed for implementing these al-

gorithms on distributed-memory, massively parallel com- Numerical experiments and parallel performance mea-
surements were made on the implemented solvers to checkputer systems. Our treatment of various boundary condi-

tions in implementing these parallel solvers are also their numerical properties and parallel efficiency. Our nu-
merical results show the parallel solvers converge with thediscussed. We designed and implemented these solvers in

FIG. 23. Scaling performances of the parallel Navier–Stokes solver.

A PARALLEL INCOMPRESSIBLE FLOW SOLVER 243

order of numerical schemes on a few test problems. Our REFERENCES
numerical experiments also show the flow solver is stable

1. C. Anderson, Lawrence Berkeley Laboratory Report, LBL-26353,and robust on viscous flows with large Reynolds numbers
1988, Berkeley, CA (unpublished).

as well as on an inviscid flow. Our parallel efficiency tests
2. J. B. Bell, P. Colella, and H. Glaz, J. Comput. Phys. 85, 257 (1989).on Intel Paragon and Cray T3D systems show that good
3. J. B. Bell, P. Colella, and L. H. Howell, ‘‘An Efficient Second-Orderscalability on a large number of processors can be achieved

Projection Method for Viscous Incompressible Flow,’’ in Proceedings,
for both the multigrid elliptic solver and the flow solver 10th AIAA Computational Fluid Dynamics Conference, Honolulu,
as long as the granularity of the parallel application is not HI, 1991, p. 360.
too small, which we think is typical for applications running 4. J. B. Bell and D. L. Marcus, J. Comput. Phys. 101(2), 334 (1992).
on distributed-memory, MIMD machines. For future work, 4. W. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987).
we plan to generalize the parallel solver package to ther-

5. T. F. Chan and R. S. Tuminaro, ‘‘A Survey of Parallel Multigrid
mally driven flows and variable density flow problems (ac- Algorithms,’’ in Parallel Computations and Their Impact on Mechan-
tually, these works are underway at the time of writing ics, edited by A. Noor, Vol. 86, 1986.
this paper) and to extend the flow solver to 3D problems. 6. A. J. Chorin, Math. Comput. 22, 745 (1968).

7. G. Fox et al., Solving Problems on Concurrent Processors, Vol. I
ACKNOWLEDGMENTS (Prentice–Hall, Englewood Cliffs, NJ, 1988).

8. S. F. McCormick, Multilevel Adaptive Methods for Partial Differential
The authors thank Dr. Sefan Vandewalle (California Institute of Tech-

Equations, Frontiers in Appl. Math. (SIAM, Philadelphia, 1989).
nology) and Dr. Steve McCormick (Univeristy of Colorado) for some

9. W. D. Henshaw, Ph.D. thesis, Dept. Appl. Math., California Institutehelpful discussions on multigrid methods. This work was carried out at
of Technology, Pasadena, CA, 1985 (unpublished).the Jet Propulsion Laboratory (JPL), California Institute of Technology

(Caltech), under a contract with the National Aeronautics and Space 10. F. Roux and D. Tromeur-Dervout, manuscript, 1994.
Administration (NASA) and as a part of the NASA High-Performance 11. R. Schreiber and H. B. Keller, J. Comput. Phys. 49, 310 (1983).
Computing and Communications for Earth and Space Sciences Project.

12. W. E. and J.-G. Liu, manuscript, 1994.The computations were performed on Intel Paragon parallel computers
operated by JPL and by the Concurrent Supercomputing Consortium at 13. P. Wesseling, An Introduction to Multigrid Methods, Pure & Appl.

Math. (Wiley, New York, 1991).Caltech, and on the Cray T3D parallel computer operated by JPL.

